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Abstract. We give an exact expression for the extension of the Kane function for periodic
potentials with an inversion centre. The variance of the Kane function is the sum of the semi-
classical expression and the variance of the Wannier function of Kohn type.

1. Introduction

The motion of a Bloch electron in external fields has challenged theoreticians for about half
a century [1,2]. Even if the external—electric or magnetic—fields are constant, which means
that the physics is invariant under lattice translation, the mathematics involved in the quantum-
mechanical description can be quite complicated.

In 1960, Wannier remarked that in the case of a homogeneous electric field the energy
spectrum should consist of ladders of equally spaced eigenvalues, later referred to as Wannier–
Stark ladders [3]. But he also believed that ‘energy states in the electric field case have not
much intrinsic interest because they area priori known to be not normalizable and hence not
truly stationary’. If a restriction is made to a single energy band of the Bloch electron, explicit
solutions can be found which give rise to Stark ladders and are square integrable [4,5]. These
functions, known as Kane functions, practically became a standard approximation and it was
believed for a long time that the coupling of different bands would not change the spectrum
qualitatively.

The rigorous proof of the continuous spectrum by Avronet al [6] and preceding
controversies [7] did little or no harm to the popularity of the Kane functions. Since
in many cases of practical interest, the tunnelling rate is smaller by orders of magnitude
than the spacing of the Stark ladder, the picture of stationary states plus dissipation on
account of the tunnelling is still a reasonable approximation. Wannier–Stark ladders, and
their time-dependent adjuncts, Bloch oscillations, have been observed in optical experiments
on superlattices in electric fields [8–10], giving proof of strongly localized eigenfunctions.
Therefore, Kane functions or, equivalently, Wannier functions are the basic ingredients for
most theoretical studies of superlattices in electric fields [11–14]. Recent results on the optical
absorption of superlattices in electric fields show a good quantitative agreement between
experimental data and calculations based on Wannier functions [15].

From limiting cases (no periodic potential, tight-binding approximation), it is plausible
that the wave functions should narrow as the field strength increases. A semiclassical, ‘if
the unit is right, the result is right’ approach gives an effective extension of the wave packet
1x = 1E/|eF |, where1E is some effective miniband width,e is the elementary charge,
andF is the field strength. This was pointed out by many authors [8,9,11,13], and is a good
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estimate in the limit of small fields. On the other hand, forF →±∞, the Kane function goes
over to a symmetric or antisymmetric Wannier function which has a finite width of the order
of the lattice constant [14].

The question arises of whether one can find an expression for the extension of the Wannier
function that would cover field strengths from zero to infinity. In this paper we show that the
variance of the Kane function is exactly the sum of the semiclassical expression for the variance
and the variance of the Kane function in the limitF = ∞.

2. Preliminaries

Unless otherwise noted, integrals and sums run from−∞ to +∞ and asymptotic behaviour of
functions and series refers to the limit±∞. Trivial prefactors of wave functions are excluded
if they are not relevant.

We consider the one-dimensional Schrödinger equation of a particle with charge−e in a
periodic potentialU under a static electric fieldF :[

− h̄
2

2m

d2

dx2
+U(x) + eFx

]
ψ(x) = (Ĥψ)(x) = Eψ(x) (1)

whereU(x + a) = U(x), anda is called the period ofU . We assume that the potentialU is
symmetric aroundx = 0, i.e.,

U(−x) = U(+x)
and piecewise continuous.

ForF = 0, the eigenfunctions of equation (1) can be given in the form of Bloch functions:

ϕkν(x) =
√

1

2π
eikxukν(x) ukν(x + a) = ukν(x) (2)

and the spectrum consists of energy bandsEν(k). The lattice-periodic functions are normalized
according to

(ukν |ukν ′) = 1

a

∫ +a/2

−a/2
dx u∗kν(x)ukν(x) = δνν ′ .

We assume non-degenerate energy bands, which is the usual case for one-dimensional
problems. ThenEν(k) possesses continuous derivatives of arbitrary order and the Bloch
functions can be chosen such thatϕk+2π/a,ν(x) = ϕkν(x) [16].

According to Kane, an approximate solution for the eigenfunctionsψ and eigenvaluesE
of equation (1) is [4]

ψν(x) =
√
a

2π

∫ +π/a

−π/a
dk ψ̃ν(k)ϕkν(x)

Eν = a

2π

∫ +π/a

−π/a
dk [Eν(k) + eFXνν(k)]

(3)

where

ψ̃ν(k) = exp

{
1

ieF

∫ k

0
dk′ [Eν − Eν(k′)− eFXνν(k′)]

}
(4)

Xνν(k) = i

a

∫ +a/2

−a/2
dx u∗kν(x)

∂ukν(x)

∂k
. (5)

Only one representative of the Kane functions is shown for each bandν, because it is evident
that ifψν(x) is an approximate eigenfunction with eigenvalueEν , thenψν(x − am) is also an
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approximate eigenfunction with approximate eigenvalueEν + meFa (m integer). The Kane
functions represent a complete set of eigenfunctions and fulfil∫

dx ψ∗ν (x − am)ψν ′(x − am′) = δνν ′δmm′ . (6)

Henceforth we shall omit the band indexν on the understanding that the considerations
below apply for each band. Thenψ denotes the Kane function for a fixed bandν. We
note that, up to a prefactor, the definition of the Kane functions (3)–(5) is independent of the
choice of the Bloch functions: a different set of Bloch functions exp[if (k)]ϕk(x), f real,
f (−π/a) = f (+π/a), would result in Kane functions exp[if (0)]ψ(x). We will make use of
this fact by fixing the phase of the Bloch function as described below.

First, we determine lattice-periodic functionsvk that are subject to the following
restrictions:vk=0 is real;(Revk|Im vk) = 0; andvk is continuous with respect tok. Because
U is symmetric, these lattice-periodic functions have the following properties:

(i) either Revk is symmetric for eachk and Imvk is antisymmetric for eachk or Revk is
antisymmetric for eachk and Imvk is symmetric for eachk; and

(ii) v+k(x) = v∗−k(x).
The functions eikxvk(x) also fulfil (i) and (ii) but are not necessarily periodic ink. The
Schr̈odinger equation (1) forF = 0 implies that ei(k+2π/a)xvk+2π/a(x) = ceikxvk(x), |c| = 1,
for non-degenerate bands. From properties (i) and (ii) it follows thatc is either +1 or−1.
For c = +1, we setϕk(x) = eikxvk(x)/

√
2π , which givesX(k) = 0. Forc = −1 we define

ϕk(x) = eik(x−a/2)vk(x)/
√

2π which results inX(k) = a/2.
The resulting Bloch functionsϕk are periodic ink with a period of 2π/a. The alternatives

c = +1 andc = −1 from the last paragraph correspond to the cases A and B of the paper by
Kohn [16] and it is shown therein thatϕk(x) has continuous derivatives ink of arbitrary order.
The above prescription can also be used for clean numerical calculations of Kane functions.

Now we are able to give an expression for the Kane function (3) in the limitF −→ ±∞.
SinceX(k) = constant,

lim
F→±∞

ψ(x) = w(x) =
√
a

2π

∫ +π/a

−π/a
dk ϕkν(x). (7)

The functionw is real, is either symmetric or antisymmetric aroundx = 0 or x = a/2,
depending on whetheruk=0 is symmetric or antisymmetric, and obeys the same normalization
(6) as the Kane functions. Furthermore,w coincides with the special Wannier function
described by Kohn and decays rapidly, i.e.,w(x) = O(|x|−µ) for anyµ > 0.

3. The variance of the Kane function

Let χ be a quantum-mechanical wave function which is normalized to unity, i.e.,

||χ ||2 =
∫

dx |χ(x)|2 = 1.

Then|χ(x)|2 > 0 is interpreted as the probability density. The varianceσ 2 is defined as

σ 2[χ ] =
∫

dx |χ(x)|2x2 −
[ ∫

dx |χ(x)|2x
]2

andσ = 1x is interpreted as the extent of the wave function.
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We can now formulate the following lemma. The variance of the Kane function is given
by

σ 2[ψ ] = σ 2[w] +

(
1E

eF

)2

(8)

with w being the Wannier function of Kohn type, defined in equation (7), and

(1E)2 = a

2π

∫ +π/a

−π/a
dk E2(k)−

[
a

2π

∫ +π/a

−π/a
dk E(k)

]2

. (9)

The above equation means, physically, that the variance of the Kane function is the sum of the
variance of the Wannier function and the semiclassical approximation for the variance.

Proof. Since the variance is invariant under translation, we assume, without loss of generality,
thatw is centred atx = 0. First, we note from the definition (4) that the functionψ̃(k) is
periodic ink and has continuous derivatives of arbitrary order. Therefore, we may expandψ̃

as a Fourier series according to

ψ̃(k) =
∑
m

cme−ikam (10)

where

cm = a

2π

∫ +π/a

−π/a
dk e+ikamψ̃(k).

The Fourier coefficientscm are rapidly decaying.
Let us now derive an important property of the Fourier coefficientscm. Let f̃ be any

function that is periodic and continuous in(−∞,+∞). From|ψ̃(k)|2 ≡ 1 if follows that

a

2π

∫ +π/a

−π/a
dk ψ̃∗(k)f̃ (k)ψ̃(k) = a

2π

∫ +π/a

−π/a
dk f̃ (k).

If fm denotes themth Fourier coefficient off̃ , then∑
m

∑
m′
c∗mfm−m′cm′ = f0. (11)

In turn, since a function can be defined by its Fourier coefficients, equation (11) is valid for
any sequencefm, provided that the sum of thefm is absolutely convergent.

Inserting the Fourier expansion (10) into the definition of the Kane function (3) and taking
into account that e−ikamϕk(x) = ϕk(x −ma), the Kane function can be expressed in terms of
the Wannier function as

ψ(x) =
∑
m

cmw(x −ma). (12)

The variance of the Kane function now becomes

σ 2[ψ ] =
∑
m

∑
m′
c∗mBmm′cm′ −

[∑
m

∑
m′
c∗mAmm′cm′

]2

(13)

where

Bmm′ =
∫

dx w∗(x − am)w(x − am′)x2

Amm′ =
∫

dx w∗(x − am)w(x − am′)x.
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If we shift the argument by−a(m + m′)/2 in the above integrals,Bmm′ andAmm′ can be
decomposed as

Bmm′ =
∫

dx w∗
(
x − am−m

′

2

)
w

(
x + a

m−m′
2

)[
x2 + xa(m+m′) + a2 (m +m′)2

4

]
= B(1)mm′ +B(2)mm′ +B(3)mm′

Amm′ =
∫

dx w∗
(
x − am−m

′

2

)
w

(
x + a

m−m′
2

)[
x + a

m +m′

2

]
= A(1)mm′ +A(2)mm′ .

The matrix elementsB(1)mm′ depend only on the differencem − m′ and decay rapidly as
|m−m′| −→ ∞. Therefore, we may use the property (11) of the Fourier coefficients which
leads us to ∑

m

∑
m′
c∗mB

(1)
mm′cm′ = B(1)00 = σ 2[w].

Sincew is real and either symmetric or antisymmetric,

w∗
(
x − am−m

′

2

)
w

(
x + a

m−m′
2

)
is a symmetric function and, therefore,B(2)mm′ = 0. The orthonormality of the functions
w(x−am) results inB(3)mm′ = a2m2δmm′ . Likewise, by similar arguments we find thatA(1)mm′ = 0
andAmm′ = maδmm′ .

On inserting the results forBmm′ andAmm′ into expression (13), the variance takes the
form

σ 2[ψ ] = σ 2[w] +
∑
m

|cm|2a2m2 −
(∑

m

|cm|2am
)2

.

The evaluation of the second and third contribution yields∑
m

|cm|2a2m2 −
(∑

m

|cm|2am
)2

= a

2π

∫ +π/a

−π/a
dk

∣∣∣∣dψ̃(k)dk

∣∣∣∣2 − [ a2π
∫ +π/a

−π/a
dk ψ̃∗(k) i

dψ̃(k)

dk

]2

.

By the definition ofψ̃ , equation (4), withX(k) = constant, the above expression is equal to
(1E)2, equation (9), and this proves the proposition (8). �

It is worthwhile mentioning that a similar relation was found for the energy uncertainty
of the Kane function, which is defined as

ε2[ψ ] =
∫

dx ψ∗(x)(Ĥ 2ψ)(x)−
[ ∫

dx ψ∗(x)(Ĥψ)(x)
]2

.

Avron et al [17] showed that

ε2[ψ ] = (eF )2σ 2[w].

Taking this together with the result of this paper (8), one can now, for example, establish a
relation between the variance and the energy uncertainty of the Kane function.
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4. Summary

We have seen that for the important case of periodic potentials with an inversion centre, an exact
expression can be given for the variance of the Kane function. Up to an additive constant,
which is equal to the variance forF → ±∞, the semiclassical expression is correct. The
extension of the wave function monotonically decreases with|F | and its lower limit is given
by the extension of the Wannier function of Kohn type, which is the limit of the Kane function
for F −→ ±∞.
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